PRINCE OF PERSIA

Technical Information

PRINCE OF PERSIA and all source code, documentation,
and supporting materials copyright © 1989 Jordan Mechner.
All rights reserved.

October 12, 1984

BACKGROUND GRAPHICS

Each leve! consists of up to 24 screens. Each screen consists of 30
blocks {10 blocks wide x 3 blocks high), also referred to as "pieces.”
Examples of pieces are: floorpiece; pressure plate; spikes; solid
block.

The complete layout of each level is specified by a "level blueprint"
($900 bytes long).

COORDINATE SYSTEM

The Apple screen is 40 bytes wide x 192 lines high, with 7 bits per
byte. Most of the background graphics are done on the byte
boundaries (e.g., an X-coordinate of 39 puts you at the far right-hand
edge of the screen). Since each screen breaks down into 10 blocks
across X 3 blocks high, that works out nicely with each block being 4
bytes wide.

The moving characters (player, guard, etc.) use a slightly different
coordinate system. The X-coordinate is represented by one byte.
The screen is 140 pixels wide, with 58 as the screen's left edge--
giving us offscreen margins of 58 pixels on either side of the screen.
(This makes it possible to compare the X-coordinates of two
characters even if one is offscreen.)

Since all the character movements throughout the program are
specified according to the 140-wide coordinate system, we would
like to keep the character's X-coordinate on a 140-wide screen (or a
width that is a multiple of 140) for all the different conversions.
The character's position could then be mapped to the actual screen
width for that machine--320, 512, 640, or whatever--at the time
the character is drawn.

IMAGE TABLES

There are two background image tables (bgtab1-2) and 7 character
image tables (chtabi-7).

Ch. table # Contents

1,2,3,5 Player (kid); misc. shapes

4 Enemy (guard, fat guard, skeleton, vizier, shadow)

6,7 Shapes for princess scenes (princess, vizier,
hourglass)

Note: chtab6 is too big to fit into memory all at once, so it is split
into two files:
chtabB.a used for opening title sequence & levels 1-2
chtab6.b used for levels 3 and up, including victory sequence

There are two sets of background images, one for the dungeon and
one for the palace.

See accompanying lists that describe the contents of chtab6-7 and
bgtabi-2.

MEMORY USE

The Apple version uses memoary, roughly, as follows:

(during game play}

Image tables
Player
Enemy
Princess & Vizier
Background
TOTAL IMAGE TABLES

Code

Buffer space
Music

Level blueprint
Screen memory

TOTAL RAM

Packed dblhires screens
Packed princess's room

TOTAL DiSK SPACE

RAM DISK
30K 30K
6K x5 = 30K
9K
13.5K x2 = 27K
49 5K 96K
48K 48K
8K
4K 6K
2.25K x16 = 54K
16K
127.75K
42K
B8.5K

252.5K

LEVEL SUMMARY

#_ Name B.g. Opponent
0 Demo Dun Cd

1 Cell Dun Cd

2 Guards Dun &d

3 Newskel Dun Skel
4 Newmirror Pal d

5 Thief Pal d

6 Plunge Pal Fat
7 Wtless Dun d

8 "329" Dun d

9 Twisty Dun G&d
10 CQuad Pal d
11 Wild Pal &d
12 Tower Dun Shad
13 Final Dun Viz

14 Victory Pal Princess

Level O is the demo level. Although levels 13 and 14 are technically
separate levels, the “official" highest level number is 12.

——

io

QOGS

Aot 2 Block

Draa
Draw
Pou
Yo
Vel

C —seckion oF block below 2 4o lefd
R ~secdion of Llock 4o left

D - seckpa

A ~ se chioa

‘F.,m,\-f»'&ce.

po
Eo

lo

Y-cnep
S

o3

€C

39

80

éF

5

129

14!

5P

TE

| e |

254

azling

142 pineds

755 |

OFF Scee N

b 14 Pfx.ﬂ&

OFF ScREEN

34

24

X~Coumnp

Cs

o pimed$

o4

BF

% prad;

VOO UAPRLWN -

PRINCE OF PERSIA

comments

M 0 V E R

Routines to keep track of moving objects are containad
in the file MOVER.

There are 2 types of moving objects: Transitional objects
(TROBs) and mobile ocbjects (MOBs).

TROBs Ce.g. gate, spikes, pressplate, torch) can have moving
parts & change appearance, but remdin in a fixed location.

HOBs ¢(falling floor) can move all over the place, including
between scraans.

TROBs are kept track of in a data structure cailled
the "trans |ist" as follows:

numtrans = % of active TROBs
For x = 1 to numtrans:
trioc,x = block location (0-292
trscrn,x = screen ® (1-24)
trdirec,x = direction of motion (means something different
for different kinds of objects?

When an object stops moving, we sat its trdirec = -1, then
remove the object from trans list on the next cycle.

MOBs are kept track of in a similar data structure called
the "MOB list":

nummob = # of active MOBs
For x = 1 to nummob:

mobx,x = byte (0-39)
moby, x = y-coord
mobscrn,x = screen ¥
mobuvel ,x = velocity
mobtype,x = type
0: falling fioor
(No other MOB types defined at present)
moblevel ,x = level (0-2>

i-'l-*-I-*******'I-'!-l-l-'l-'l-!-*'I»'l"l'*'l-l-*'I-'I-‘!-‘l-'l-'l-*‘l'****-Ei************E!-I-*K-*

The basic routine in MHOUER Is ANIMTRANS. This
routine, which is called once per cycle, advances

8/27/89 comments/1

lists.”

112

114
115

PRINCE OF PERSIA

all active TROBs to their next phase (this |ncludes
deieting TROBs that become inactive) and marks the
approprlate redraw buffers for each TROB.

Other routines such as TRIGSPIKES, PUSHPP, BREAKLOOSE,
etc. are called to add new TROBs to the trans |ist (when,
for examplae, a charactar jumps over spikes or steps on

a pressure plate or |oose floor).

The routine ANIMMOBS performs the same function for
the MOB |15t that ANIHTRANS does for the trans |ist.
It advances all active MOBs to the position they will
occupy in the naxt frame.

Exampla: When a character steps on a loose floor, the
contro| routine senses this & puts in a call te
BREAKLOOSE {which adds the loose floor to the irans
list). For the next 10 frames or so, the locose flaor
wiggies (under the control of ANIMTRANS> unti} ANIMTRANS
decides it's time for it to fall. At that point, the
loose floor is deleted from the trans list, the block

is replaced by "empty space”, and a new MOB is

created to take its place. Under the control of
ANIMHMOBS, the MOB then falls until it hits the ground,
at which point ANIMMOBS deletes the falling floor from
the MOB list and changes tha objid of the block it landed
en te "rubble.”

F R AMEA ATUDWUV

¥ E X EEEETREEEEEFETREEREREE RN EREREFREEREETEENRF

¥ OFE ¥ EFFE KR E N R EEENRE R

IMAGE LISTS

FRAMEADV never calis hires routines directly. Instead,
parameters of images to be drawn are stored in "image
There are 6 separate image |lists:

bg: Images in background plane (drawn first)
X, v, IMG, OP

’ ’

wipe: Solid-color wipes (drawn with b.g. plane>
X, ¥, H, W, coL

fg: Images in foreground plane {(drawn last)
X, ¥, IMG, OP

mid: Images between b.g. and f.g. planes
X, OFF, ¥, IMG, OP, TYP, CU, cD, CL, CR

msg: Images in message plane (drawn last of all)
X, OFF, ¥, IMG, OP

gen: Genaral instructions (e.g. clear screen)

8/27/89 comments/2

116 *

117 *

118 * Explanation of parameters:

119 *

120 * X = X-ecoord (in bytas)

121 * OFF = X-offset (0-6)

122 » ¢ = Y-coord

123 *» IHG = imaga ® in table (1-n>)

124 *» QP = opacity

125 % TYP = image type {(for mid only>

126 * CU = top cutoff

127 * CD = bottom cutoff

128 * CL = |left cutoff

129 * CR = right cutoff

130 * H = height

131 * W = width {in bytes)

132 * COL = color (for wipe only)

133 *

134 * NOTE--bg, fg, and wipe calls assuma offset=Q

135 *

136 *

137 * Thaere is also an "object list" with params similar to
138 * nmid |list;

139 *

140 * X, OFF, ¥, IMG, FACE, TYP, CU, CD, CL, CR

141 *

142 * Notae that obj list has 2 additional params:

143 *

144 * objFACE = left/right

145 * objTYP = objact type (Not to be confused with midTYP)
146 *

147 * The object list has one entry for each object %o be
148 * drawn Ce.g., "kid," "falling floor"). FRAMEARDV uses
149 * the object list to build the actual mid list

150 * of images to be drawun. E.g., the single object "falling
151 * fiocor” might transiate into 3 separate images:

152 % AR-section, B-section, and D-section,

1S3 *

154 %

155 *

156 * REDRAH BUFFERS

157 #

158 * Each redraw buffer contains 30 counters, one for each
158 * block on screen: 0 = skip, hon-0 = redraw and decrement.
160 *

161 * REDBUF:

162 * The most general-purpose buffaer. Marking REDBUF for a
163 * block will cause all sections of the bloek to be redrawn.
164 *

165 * HIPEBUF:

166 * Wipe square (usually to black), WHITEBUF contains

167 * wipe height, in lines,

168 *

169 * Marking both REDBUF and WIPEBUF for a block will cause
170 * the entire block to be erased & redrawn. This is the
171 * safest way to radraw a block,

172

173 * HMOUEBUF:

PRINCE OF PERSIA 8/27/89 comments/3

174 * Refers only to movable portion of object (e.g. lowering
1?5 * gate)., Superseded by REDBUF.

176 *

177 * FREDBUF:

178 * PRefers only to foreground plane. Marked when character
179 * goes behind a post or other object with a frontpiace,
180 * Superseded by REDBUF.

1897 *

182 * FLOORBUF:

183 * Rafers to floorpieces. HMHarked to the right of q

184 * falling or hanging character., FLOORBUF causes floorpiece
185 * to be drawn in the wmid plane (where it will cover up

186 * character if appropriate).

187 =*

188 * HALFBUF:

189 * Like FLOORBUF, but redraws a triangular section of

{190 * the floorpiece instead of the whole thing. Used when
191 * q character climbs up on the |eft side of a floorpiece
192 * and we want to mask out his lower body while letting his
193 * upper body show. <(Superseded by FLOORBUF. >

194 *

195 * OBJBUF:

196 * HMarked whensver objects need to ba drawn in a given bilock.
197 * (Objects are always the last mid elements drawn in

198 * a block., Objects are assigned to blocks based on

199 * their lower left x-y coords. Characters are considered
200 * objects. There can be multipie objects in a given block.)
201 %

202 * TOPBUF:

203 * 10-byte buffer for row of D-sections across top of screen
204 * (from screen above).

205 %

206 * Naote that TOPBUF is a 10-byte buffer while the others are
207 * all 30 bytes.

208 =

209 *

210 *

211 * Tha spaecific routines callad by SURE <in FRAMEADV) for
212 * eageh of these buffers are:

213 %

214 * REDBUF: redblock (drawc, drawb, drawmb, drawd, drawmd,
215 % drawa, drawma, drawfrnt)

216 *

217 * HIPEBUF: wipesq

218 *

219 * MOVEBUF: drawe, drawmc, drawmb, draowma

220 =

221 % FREDBUF: drawfrnt

222 %

223 * FLOORBUF:. drawfloor

224 %

225 * HALFBUF: drawhalf

226 *

227 * O0BJBUF: drawobjs

228 *

229 * TOPBUF: drawc, drawb, redrawd, drawmd, drawfrnt

230 *

231 *

PRINCE OF PERSIA 8/27/89 comments/4

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
265
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
294
285
286
287
288
289

PRINCE OF PERSIA

B L UEZPIRSR I NT

LEVEL BLUEPRINT ($900 bytes>

Start Length
BluaTypa B700 720
BlueSpec BSDO 720
LinkLoc BCAO 256
LinkHap BDRO 256
Map BERO 96
info BFOO 2356

TOTAL: 2304 bytes

BLUETYPE

Bytes 0-29 describe screen %1
Bytes 30-59 v screen %2
etc, '

24 screens total.

Each BLUETYPE byte corresponds to one block.
(30 blocks per screen.) Blocks are mapped
into BLUETYPE left-right, top-bottom.

AND with ®$1F to get the "objid," or object
idantification numbar <(0-31), of aach block.

R X N R X % X E R EER X R R EREE R E R ® FE KN E KN EFEFFEERFEFEFEEEFEFEEREEEEEE R

BLUESPEC
(Scraean blocks mappad tha samae way as in BLUETYPE.)

Taken together, each pair of corresponding bytes in
BLUETYPE and BLUESPEC contains all tha information
about an object. The BLUETYPE byte always contalns
the object id. The BLUESPEC byte functions diffarantly

depending on what the object is.

For movable objects (gates, spikes, torches, etec.)
BLUESPEC speclifies the object's "state" (e.g. is it
open, closed, somewhere in between?)

For static objects (floor, space, solid block, ete.?
BLUESPEC specifies the object's "pattern” (a.g. which
design appears on the wall behind it?>

For pressure plates, the BLUESPEC byte tells which
gates the pressure plate controls. Specifically, the
BLUESPEC byta is a pointer <(0-255) to the first entry
in the link list for this prassure plate.

8/27/89 comments/5

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
3214
322
323
324
325
326
327
328
329
330
331
332
333
334
3335
336
337
338
339
340
341
342
343
344
345
346
347

Link Tist (LINKLOC/LINKMAP >

Contains a list of the gates controlled by each pressure
plate. Each pair of bytes specifies one plate-to-gate
linkage. There can be up to 256 such linkagas in o lavel.

LINKLOC:

Bits 0-4: gate screen posn (0-29)

Bits 5-6: low 2 bits of gata screen ® (1-24)

Bit 7: 1 = this is last entry, 0 = more gates to come

L INKMAP
Bits 0-4: pressplate timer (0-31)
Bits 5-7: high 3 bits of gate screen ¥

If a pressplate contreis nothing, LINKLOC = FF; LINKHAP
still functions as pressplate timer.

MAP
Specifies how the 24 screens of the Jevel are connected.

Each screen gets 4 bytes corresponding to the screen *s
of the 4 adjacent screens.

screen %1
screan %2

Bytes 0-3
Bytes 4-7
etc,

For each scraean:

Byte *§ = screen to left
Byte #2 screen to right
Byte %3 screen above
Byte %4 = screen beiow

i HR

{NFO
Bytes 0-63: reserved for editor
Bytes 64-255. Information about starting positions

of player % other characters on this level.
{See MMEREQ for details.)

$ E QT A B L E

Frame def list:

¥ E X EEFEEREEREXEEEFFEFEEEREEEREEEREREEEEEETEEEEEREEREREREREEEERE RN

PRINCE OF PERSIA 8/27/89 comments/é

348
349
350
as1
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
184
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

PRINCE OF PERSIA

¥ EE R EREE N EEEE N R EEREFEEETEEEEERREEREEEETETRFELEESREEEETERERETEERR

1200 bytes allocated -- 240 frames, 35 bytes each
{24 1-255 reserved as commands)

Frame definition consists of:
{1) Fimage
Bit 7 = chtable # (0-7), bit 2

Bits 0-6 = image % (0-127)

SUMMRRY :
$00 + x: chtable 1,2,3,4
$80 + x: chtable 5,6,7,8
{2) Fsword
Blts 6-7 = chtable #* (0-7», bits 0-1
Bits 0-5 = pointer to SWORDTAB frame (0-63>
SUMMARY :
$00 + x: chtable 1,5
$40 + x: chtable 2,6
$80 + x: chtable 3,7
$c0 + x: chtable 4,8
(3> Fdx
X-shift in pixels ¢+ = fud, — = bkwd>
(NOTE -- horizontal resolution is 140 pixelis)
{4) Fdy

Y-shift In pixels (+ = down, - = up)
(Frame %15 is dafined as unshifted>

(5> Fcheck
Bit 7 = odd/even pixel

Bit 6 = 1 if floor check |Is required (i.e., if weight
is on floor>

BitS =1 to "thin" this frame for collision detection
Bits 0-4 = number of pixels (0-31) from left edge of

image block to base x-coord
Cusual ly center of foot baaring character's welght?

SUMMARY :
$c0 + x: check, odd
$40 + x: check, even
$80 + x: no check, odd
$00 + x: no check, even

+ $20 to set bit 9

8/27/89 comments/7

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

PRINCE OF FPERSIA

*i************-I-**'I-'!-I-l-!-l-'l-*'l'*************************i*l-'l-'lbl"l-l-

SEQPOINT is 2-byte pointer to character's current
position in sequence tabla.

Seq pointer is incremented by 1 with each frame—advance.

CTRL can jump seq peinter around at will <e.g., in response
to joystick command?

POSITIVE seq table values represent frame numbers.
NEGAT |VE values are instruction codes.

Sequence table instructions:

goto NN jump seq pointaer to NN (iow byte first)
aboutface change KIDFACE direction

up up one floor

douwn down one floor

chx N KIBX := KIDX + N (BEFORE we draw next frame)
chy N KIDY := KIDY + N (ditto>

act N change action code to N

setfall X,¥Y set initial x,y velocity for freefall
fiction codes:

dead

standing stili

running, jumping, other actions

that require a floor beneath your feet
hanging, climbing, and all other actions that
require hoelding onto a ledge

in midair (briefly>

in freefall

being bumped

hanging straight

turning

|
—_ O -
wianu

oUW V]

Screen resolution is 140 x 192.

NOTE: Frame table offsets are TEMPORRRY, sequence table
offsets are PERMANENT.

CTAL draws each frame at [KIDX + Fdx, KIDY + Fdyl,

but leaves KIDX & KIDY unchanged for the next frame.
"Chx" and "Chy" instructions in sequence tablae, howaver,
change KIDX & KIDY permanantly.

For JUNPHANG, CLIHBUP, etc., the idea is for KIDX, KiDY &
KIDLEVEL to keep the kid where he started —~ at the end

of the block behind & below the one he's hanging from —-
and use only the frame list x & y offsets, until he's back
oh the ground. This way, we can branch into mither HANGDROP
or CLIMBUP from any point in HANG.

The first 4 frames of STARTRUN also use only the frame list

8/27/89 comments/8

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
492
483
494
485
486
487
488
489
490
491
492
493
494

offsets. This lets us switch easily to, say, FULLSTEP

or STANDJUMP .

X
(4]
a

Potion [Ds

Empty

Regular healing
Boost strength
Weightless
Upside down
Foison

NBhON=0O

€ 9 % % K ¥ B X R K F K KKK FEXEREEERREEEETEEE

Character |Ds

Kid

Shadow

Guard

Vizier (in game?

Skeleton

Princess (in princess cuts?
Vizier (in princess cuts>
Mouse

gmma.m—c

--End assembly, 0 bytes, Errors: D

PRINCE OF PERSIA

8/27/89

comments/9

* K

* K

oA e K M ok K K ok K o A R R e N R oW R R K R K K K W K K K K K K K K R O K Kk RO K K K K R O N W R X

-

Character animation comments

For each character. we maintain a 14-bvte block of data
(referred to a5 “"character data®™ or "character vars®)
that describes the character’s current position & what
he is doing. The !4 bytes are allocated as follows:

CharPosn

Frame # of the character’s current position. E.a.,
CharPosn = {9 refers to ftrame #15 of the frame list, or
"standing stiltl.*”

CharX A
CharY

Character X & Y coords, based on a 140 x 192 screen.
tUpper teft corner is X = 38, ¥ = &)

CharFace
Rirection character is facing: D = right, -1 = lett

CharBlockX
CharBlockY

Coords of character’s current block ¥ = 0-2, ¥ = §-27,
(0,8 is upper le+t block.

Char&ction

Code containing information about character’s current
acticr, E.g., Charactior = 4 means "fall:ing." This
variazie ¢ vsed in 2 variety of different wars in
gi<ferent situations :

Chardie;

charyve)
& Y camponenis ¥ Character‘s welocity dduring
freesst 1), Ewecwr spame, ChariVel is added te Char¥ and
Zhes¥iJel e addes te Cha-v,

CharSeg (2 brtes)
Fointer to current address in the sequence *ahle,
CharScrn

Screen ¥ of character‘s current screen. (8 for null
SCTeen,)

CharRepeat

When character stands at the edge of a chasm & takes a

cautious step forward, the first time he iries it he only
vtests" with his foot. This causes CharRepeat (usually

2 non-0 value) %o be set to 0, The next time he tries a
cautious step, he will step right off the edae.

CharlD

Identifies character:

= Kid

= shadow man

guards, vizier

skeleton

princess (in princess scenes)
= yjizier {in princess Scenesl

4 = mouse

I

1
1
2
4
3
5
2

Char Sword

27 sword drawn
0: sword sheathed

Charlife

~1: 3tiuve
0-127: deszd

H ok N K W K Ok Kk Kk kR K X oK ok ook Kk ok R R R K o K kK K

! *
? % Twg permanent sets of CharData are mainfained: KidData
: % {4or the vi7: sncd ShadData (for hie opponenti. Notle
| * +that the ooponernt data 15 alwars referred 10 Dy the
5 ¥ prefin "Bhad" siinhcucn the zharactes mer bDe the shaoow
5 + man, skeletan, Vizier, eiz.
i ¥
: # CharData itse" 72 used ac temporary storage for whichever
. £ eharactes we wehi o ceal with., Typrizallxr, we wiii calt
| * _oadKid fo "izad® the Wig as oun ‘u“'er* '“a"a:fe“ {lae.,
: # lpad the & by o ighat

thern cail the -r cut

* when We're done K i

CharDztez ba

* game foniro rogiie

*

« There :2 2 second data set uysed f0r lempoOrnany suoTage
5 * Cpphate. OprData aiwaws contzins the "ether™ character
: *» +*hap CharDez<a -- e.Z., when we 27! Loadkid, we load

KigdDats into CharData and Shadbata into Opplats.

*

INFO

The INFO block of the level blueprint specifies the starting positions &
characteristics of the player & all guards in the level:

There are three player variables:

KidStartScrn player starting screen (1-24)
KidStartBlock starting block # on that screen (0-29)
KidStartFace facing direction (-1 = left, 0 = right)

There are six guard variables. A complete set of six variables is maintained
for each of the level's 24 screens.

GdStartBlock starting block # on this screen (value >29 means no
guard on this screen)

GdStartFace facing direction (-1 = left, 0 = right)

GdStartX starting X-coord (140-width coord)

GdStartSegL™H starting posn in sequence table (2-byte)

GdStartProg guard program # (0-11)

AUTO

ADDGUARD

On a cut to a new screen, we call ADDGUARD. ADDGUARD first checks for
the hard-wired shadowman appearances on certain levels. (The
shadowman is different from a normal guard and will be discussed later.
The Vizier and the skeleton are treated as guards.) If none of these apply,
we fall through to AddNormalGd.

AddNormalGd checks the variables described in the section above (in the
INFO block of the blueprint for this screen) to see if there is a guard on the
new screen.

Note: GdStartBlock is used to derive CharY. CharBlockX is derived from
GdStartX. The precise value of GdStartBlock therefore doesn’t matter; there
are effectively only three values.

The guard’s starting position is derived from GdStartSeqL™H, which retain
the 2-byte value of CharSeq. If GdStartSeqH = 0, that tells us to use the
default CharSeq value (usually "alertstand”). Once we have set CharSeq,
we call ANIMCHAR to get the initial value of CharPosn. The next step is to
check CharPosn to see if the guard is dead or alive.

CUTCHECK

When the character leaves a screen, we need to save the new position of
the guard (if any) on that screen--so that if he comes back to that screen
Jater, the guard will be in the correct position. This is accomplished by
CUTCHECK.

When we leave a screen, we have two choices: UPDATEGUARD or
TRANSFERGUARD.

UPDATEGUARD updates all the guard data for the old screen
(GdStartBlock, etc.) so that the guard will be in the correct position when we
return. It also removes the guard as an active character (i.e., sets ShadFace
= 86 and OppStrength = 0).

TRANSFERGUARD is used when we want the guard to follow the player to
the next screen. In this case, all we need to do is remove the guard from his
old screen (set GdStartBlock > 29 for that screen) and change CharScrn,
CharX, & CharBlockX to put the guard on the new screen. Theoretically, a
guard can follow the player across any number of screens (by repeated use
of TRANSFERGUARD). When the player finally leaves the guard behind,
UPDATEGUARD saves the guard's new position, so that the guard can end
up many screens away from where he started.

CharFace = 86 is the code for “nonexistent character.” You can also "get rid
of” a character by setting his CharScrn # VisScrn. Note that OppStrength is
handled independently from the CharVars, so if you want to remove a
guard’s strength meter as well as the guard himself, you need to set
CppStrength = 0 as well.

h W _man

The shadowman is not treated as a guard. Throughout the program, various
specialized bits of code check for specific circumstances which will cause
the shadowman to appear, disappear, change position, etc.

The routine CSPS ("change shadoewman position”) puts the shadowman in
a new position. His new position is specified by a data set of 8 bytes:
CharPosn, X, Y, Face, BlockX, BlockY, Action, and the sequence table entry
point.

ENEMY FIGHTING LOGI

There are 12 different enemy fighting programs. Each is defined by a set of
8 values:

strikeprob
restrikeprob
biockprob
impblockprob
advprob
refractimer

specialcolor
extrastrength

The first 5 values specify fighting characteristics. E.g., STRIKEPROB =
probability x255 of striking from a ready position. (0 = never, 255 = always).

REFRACTIMER is the length (# of frames) of the guard’s “refractory period”
after being hit.

SPECIALCOLOR specifies whether the guard's uniform is the basic color for
that level (D) or the gpecial color {1).

EXTRASTRENGTH specifies how many extra strength points (0-1) that
guard gets above the basic strength for that level.

“Basic strength” and "basic color” are indexed by level number.

ENEMY SHAPE SETS

The enemy shape sets are:
guard

fat guard

Vizier

skeleton

shadowman

Since the enemy shape set (chtable4) is loaded in at the beginning of the
level, all the enemies on a given level must use the same shape set. (The
guards’ uniform colors, however, can vary from screen to screen within the
level.) This is why Levels 3 (skeleton) and Level 8 (fat guard) have no other
enemies.

Level 12

Level 12 is actually three separate levels, all of which claim to be Level 12.
The real Level 12 starts at the bottom of the tower. After you've defeated the
shadowman and run off to the left, Level 13 is loaded in, with the Vizier
shape set replacing the shadowman shape set. The first screen of Level 13
is identical to the last screen of Level 12, for continuity, but there is no way
for you to get back. (If you die on Level 13, you will be restarted at the
beginning of Level 13--but the message will still say Level 12.) After you kil
the Vizier and climb the stairs at the end of Level 13, you go to the Princess’s
level, which is technically Level 14, {Levels 12 and 13 both use the
dungeon background set, while Level 14 uses the palace set.)

If your time runs out while you're on Level 13, the game doesn't end (on the
theory that while the Vizier is engaged in combat with you, he can't do
anything to the Princess) until you die.

SAMPLE (MACE TABLE

CTABLE :

| Aves

APPE2

AFVES

APFE&

Apt: { €| 3

Avpr2: {5

AvPR3: L1 1 4

MRS

Node -

‘# ofF i :mujes " ‘b«élc

Addess of is¢ th-r. (fos-b7+c -F-.rs+)
¢ v 20d enne

R 77 e

" “ Rrst free byte

$u 3 :mjc
(14 l:f-i-r.s_)

Sr(ey
(7 bytes)

(& brtes)

lmsqe dedr bptes cce read of € lefb g, bothm—trp.

BGTABLE 1 . . 24 gate C (6)

35 gate C (7)
01 fleoor A 36 gate C (8)
02 floor B 37 gate B (1)
03 floor A mask 38 gate B (2)
04 floor B mask 39 gate B (3)
05 spikes A (1) 3a gate B (4)
06 spikes B (2} 3B gate B (D)
07 posts A 3C gate B (6)
08 posts B 3D gate B (7)
09 posts C 3E gate B (8)
0A gate A 3F i
0B gate B 40 uienmm——
0C gate C 41 -
0D gate C mask 42 T
0E podhy boif A (ptec) 43 gate bottom (STA)
orF taieray @ e 44 gate bottom (ORA)
10 pillar bottom A 45 posts frontpiece
11 floor half mask 46 gate frontpiece
12 floor half A 47 stripe
13 rubble frontpiece 48 pillar bottom frontpiece
14 mirror A 49 rillar top frontpiece
15 floor D 4A mirror B
16 panel w/floor D 4B up pressplate A
17 panel w/o floor D 4c up pressplate D
18 down pressplate D 4D exitl B
19 pressplate D 4E exit2 B
1a pillar bottom B 4F exitl C
1B loose floor R 50 exit2 C
1C pillar top B 51 torch B
1D pillar top C 52 flame (1)
1E loose floor A (1) 53 flame (2)
1F loose floor A {2) 54 flame (3)
20 rubble A 55 flame (4)
21 rubble B 56 flame (5)
22 spikes A (2) 57 bottom jaw (1)
23 spikes B (2) 58 top Jjaw (2)
24 spikes A (3) 59 bottom daw (2)
25 spikes B (3) 5A top jaw (3)
26 spikes A {(4) 5B bottom jaw (3)
27 spikes B (4) 5C top jaw (4)
28 spikes A (5) 5D bottom jaw (4)
29 spikes B (5} 5E top jaw (5)
2A spikes A (6) 5F bottom jaw (5)
2B spikes B (6) 60
2C locse floor D (1) 61 flame {6)
2D loose floor D (2) 62 flame (7)
2E rubble D 63 flame (8)
2F gate C (1) 64 flame (9)
30 gate C (2) 65 jaw front (1)
31 gate C (3] 06 jaw front (2)
32 gate C (4) 67 jaw front (3)
33 gate C (5} 68 jaw front (4)

69 Jaw front (5)

6A

6B stairs

6C door

6D door mask

6E door top

6F block B (type 2)

70 "

71 Illl'l'

72 uzn

73 |l3l|’

?4 |l4"

75 ll5"

76 "o"

'?7 |I'?l'l

78 II8I‘I

79 llgll

7A "LEVEL™"

7B empty message box

7C YCONTINUE" msg box

7D "MINUTES LEFT" msg box
7E YTURN DISK OVER" msg box
7F "SECONDS"

BGTABLE 2

01 panel B (type 2)

02 panel C (type 2}

03 block frontpiece (type 1)
04 block B (type 1)

05 block C (type 1)

Co block D (type 1)

07 flask

08 bullet

09 1+ bullet line

0a 2+ bullet line

OB 3+ bullet line

ocC blank

0D

0B smeared bottom jaw (1)
OF smeared bottom jaw (2)
10 smeared bottom djaw (3)
11 balconyl B

12 balcony2 B

13 balconyl C

14 balcony2 C

15 special flask

16

17 skeleton A

18 skeleton B

19 sword A

1A panel B (type 1)

1B panel C (type 1)

1C

iD
1E
1F
20
21
22
23
24
25
26
27
28
29
22
2B
2C
2D
2E
2F
30
31
32
33

panel B (type ()
panel C (type 0)

panel w/arch A

floor B (type 1)

space B (type 1}

floor B (type 2)

space B (type 2)

space B (type 3: window)
arch support A

arch support frontpiece
arch 1 A

arch

arch top

bubkbles (1)
bubbles (2)
bubbles (3)
bubbles (4)
sword gleam

B

L

* = side B only
t = side A only
CHTABLE 6
01 flame 1
02 flame 2
03 flame 3
04 flame 4
05 flame 5
06 flame 6
07 flame 7
08 flame 8
0% flame 9
DA f pslntp -4
0B {psiveo-2
0C post
0D glass 1
O glass 2
OF glass 3
10 glass 4
11 glass 5
12 glass 6
13 glass 7
14 glass 8 {(empty)
15 glass 0 (full)
16 sand 1
17 sand 2
18 sand 3
19 pturn-15
1a pturn-4
1B pturn-5
1C pturn-6
1D pturn-7
1E pturn-8
iF pturn-9
20 pturn-10
21 pturn-11
22 -‘» ?51?’,1-:'? wesk
23 pback-3
24 pback-5
25 pback=7
26 pback-9
27 pback-11
28 pback-13
29 *plie
232 star 1 EOR
2B star 2 ECR
2C *plie mask

|

WO~ s WN P

(6 E

%

o e
'

. 2D
I 2E
2F
30
31
I 32
1 33
34
© 35
| 36
37
38
35
‘3A
3
3C
3D
| 3E
| 3F
40
11
42
473
L 44
45
- 46
L 47
i 48
149

4A
| 4B
Yo
| 4D
' 4E
4F
i 50
51
52
‘53
54
55
56
57
58
59
5A
5B
5C

|5D

*embrace~1
*embrace—2
*embrace-3
*embrace—1
*embrace—5
*embrace-6
*embrace-7
*ambrace—8
*embrace—9
*ambrace-10
*embrace-11
*embrace-12
*embrace-13
*embrace-14
#prise-1
*prise—2
*prise—3
*prise—4
*prise-5
*prise—6
*prise-7
*prise-8
*prise-9
*prise-10
*prigse-11
*prise-12
*prise-13
*prise-14

fvwalk-8

tvwalk-9

Tvwalk-10
tvwalk-11
tvwalk-12
tvwalk-13

tvwalk=-14 (/)

tvstop-1
tvstop-2
tvturn-5
tvturn-o6
tvturn-7
tvturn-8
tvturn-9
tvturn-10
tvturn-11
tvturn-12
tvturn—-13
tvturn-14

“tvecast-2

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
19
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

C6.E

' 5E

tvcast-3

- OF tvcast-4

' 60 tvcast-5
6l tvecast-6
62 tvcast-7
63 tvcast-8
64 tvcast-9
65 tvcast-10
66 tvcast—11{t!4)

: 67 tvcast-13

- CHTABLE 7

F 01 tvcast~14
02 tvcast~-15

- 03 tvecast-~16

. 04 tvecast-17
05 Avterd — 1
A *feany = W0a
b7 Y yCed - 10b
0% A verd - |

68
69
70
71
72
73
74
75
76
77

78
79
80
81
F2
%3
2)
¥

PRINCE OF PERSIA--Cheat Key Varsion

August 27, 1989
SKIP Skip to next level (up to Level 4)--Reduces time
remaining to 15 minutes

2?7 Enable cheat keys

With cheat keys enabled:

[Return] Disable cheat keys

SKIP - Skip to next level (up to Level 12)
SRR

TINA Go to end of level 12

R Restore full strength

BOOST Boost max strength (origstrength) by 1

Z Reduce guard to 1 unit of strength

ZAP Zap guard (he drops dead)

Prince of Persia sound effects

Note: Not all of these are in the Apple version.

Footsteps

Soft landing

Medium landing ("Oof!")

Hard landing (Splatl)

Sword clash

Stab opponent

Stab skeleton

Stabbed by opponent

Bones leap to life

Impaled by spikes

Slicer blades clash
Character gets sliced in half
Gate rising

Gate stops at top

Gate coming down slow
Gate reaches bottom (Clang!)
Gate crashes down

Entrance door closes

Exit door opening

Bump into wall (soft)

Bump into wall (hard)

Bump into mirror

Falling floor lands on your head
Loose fioor shakes

Falling floor lands

Drink potion--1 unit of strength restored

Drink special potion--strength boosted to higher level

Drink poison (lose 1 unit of strength)
Unsheathe sword

Jump through mirror

Grab on to ledge

Drink potion (glug glug)

